Association of Nutrition with ovarian reserve and timing of menopause

Nazanin Moslehi

Assistant Professor Nutrition and Endocrine Research Center Research Institute for Endocrine Sciences Shahid Beheshti University of Medical Sciences

moslehina zanin @yahoo.com

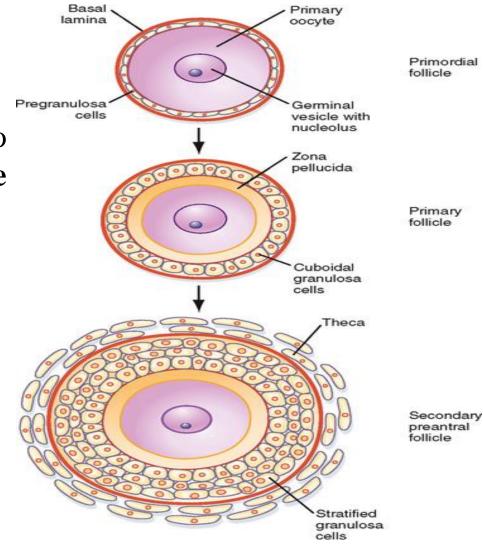
August 29, 2024

Content

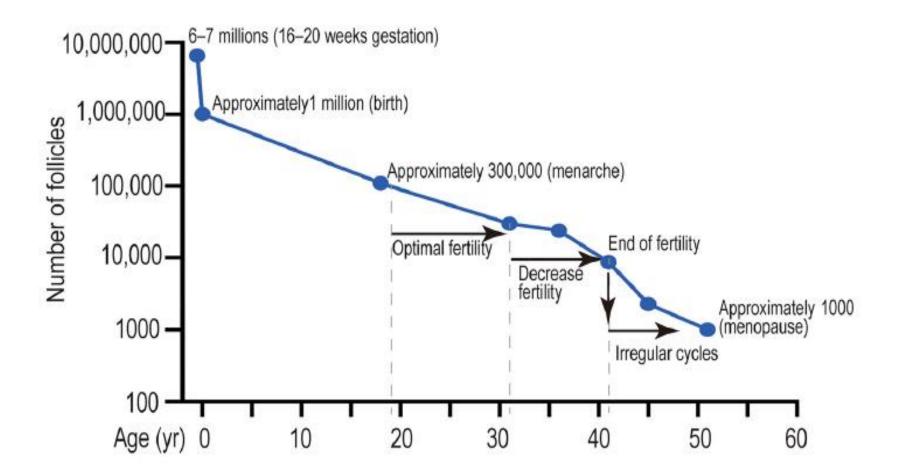
1. Introduction

- Follicles
- Ovarian aging
- Ovarian reserve
- Markers of ovarian reserve

2. Nutrition, ovarian reserve, and menopause

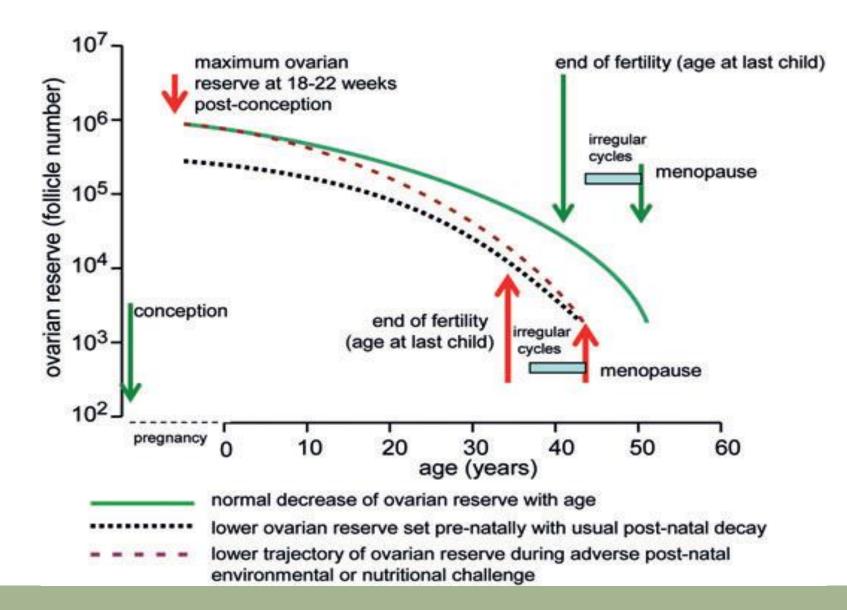

- Developmental and environmental influences on ovarian reserve
- Body mass index and reproductive aging
- Antioxidants and reproductive aging
- Vitamin D and reproductive aging
- Other dietary factors and reproductive aging

3. Conclusions


Follicle

• The functional unit of the ovary is the follicle

- The ovarian follicle can be classified into different types according to the degree of **oocyte maturity** and its **histological structure**:
 - Primordial
 - Primary
 - Secondary
 - ✓ Antral
 - Pre-ovulatory


Ovarian aging

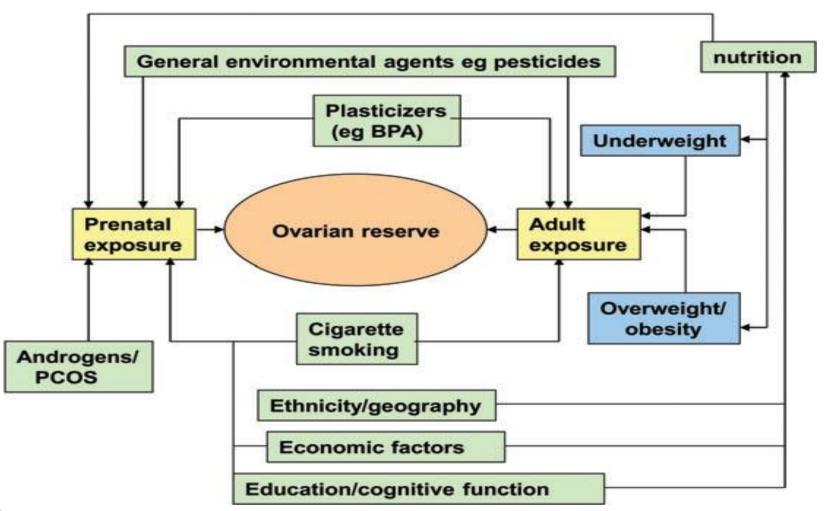
Ovarian reserve

- Ovarian reserve is a term used to estimate the total number of immature follicles present in the ovaries.
- Ovarian reserve can predict:
 - Risk of infertility
 - Success of assisted reproductive treatments (ARTs)
 - Age at which menopause occurs
- The ovarian follicular reserve represents a fixed, finite number
- The rate at which resting primordial follicles die or begin to develop (or both) will determine the reproductive life span of a woman.

Variations in decline of ovarian reserve

- In addition to the diminishing follicle reserve, oocyte quality also is declined with increasing age.
- * The gradual deterioration in oocyte quality begins at least after the age of 31 years.

Markers of ovarian reserve


Characteristics of a good marker	Age	AMH	FSH	AFC
Low intercycle variability	+++	+++	-	++
Low intracycle variability	+++	++	-	++
Applicable to all patients	+++	+++	+	+
Operator independency	+++	+++	+++	-
Prediction of poor response	+	+++	++	+++
Prediction of hyper response	+	+++	+	+++
Prediction of oocyte retrieval	++	+++	+	+++
Individualization of treatment	+	+++	-	+++
Economics	+++	-	-	-

-: not appropriate, +: not very appropriate, ++: appropriate, and +++: very appropriate.

Anti-Mullerian hormone (AMH)

- AMH is produced by the granulosa cells of growing follicles, from primary follicle to small antral follicles.
- The production of AMH commences around 36 weeks of gestation.
- Detectable serum AMH levels rise during early puberty up until they reach a plateau around the age of 20–25 years. Thereafter serum AMH levels gradually decline with advancing age, resulting in undetectable concentrations around 5 years prior to menopause.
- AMH is currently the most promising marker for predicting age at natural menopause

Developmental and environmental influences on ovarian reserve

Body mass index and ovarian reserve

- Obesity is known to affect human reproduction in both males and females.
- Adiposity can influence the metabolism of sex steroid hormones:
 - Androgenicity † (higher expression of enzymes involving metabolism of androgens in adipose tissue)
 - Peripheral conversion of androgens to estrogens **†** (aromatase activity of adipose tissue)
 - Availability sex steroid hormones (reducing hepatic sex hormone binding globulin synthesis in obese women)

Negative feedback effect on the hypothalamic-pituitary-gonadal axis

Body mass index and ovarian reserve (cont.)

Chronic inflammation caused by obesity induces ovarian oxidative stress, which affects the different stages of folliculogenesis (development, maturation, and ovulation).

Overweight/obesity have a negative impact on ovarian function: women with a high BMI had significantly lower AMH levels and AFC than those with a normal BMI.

Body mass index and menopause

Mata-analysis on association between BMI and early menopause (< 45 years)

Group	No. studies	Hazard ratio (95% CI)	I2 (%)		
Compared to normal weight women					
Underweight	9	1.08 (1.03, 1.14)	71		
Overweight	4	0.93 (0.91, 0.96)	0		
Obese	4	0.95 (0.79, 1.15)	79		
Compared to underweight women					
Overweight	3	0.92 (0.90, 0.94)	43		
Obese	3	0.88 (0.82, 0.95)	60		

Body mass index and menopause (cont.)

Mata-analysis on association between BMI and late menopause (≥ 56 years)

Group	No. studies	Hazard ratio (95% CI)	I2 (%)		
Compared to normal weight women					
Overweight	8	1.52 (1.29, 1.79)	26.8		
Obese	8	1.35 (1.14, 1.60)	0		

Antioxidants and reproductive aging

- Aging is accompanied by a decline in mitochondrial mass and function in different tissues.
- Mitochondrial alterations during aging trigger increased ROS production, which, in turn, boosts mitochondrial dysfunctions.
- Antioxidants, such as resveratrol, N-acetyl-L-cysteine (NAC), melatonin and CoQ10, and vitamin E and C may prevent oxidative damage and delay ovarian aging.
- Some natural antioxidants such as quercetin and curcumin can also protect the ovaries.
- Dietary sources of quercetin: Fruits and vegetables, particularly citrus fruits, apples, onions, parsley, tea, olive oil, grapes, dark cherries, and dark berries such as blueberries, blackberries, and bilberries

Resveratrol

- Resveratrol is a polyphenolic compound with antioxidant, antiinflammatory, cardioprotective and anti-neoplastic properties.
- Dietary sources : grapes, peanuts, cocoa, and some berries such as strawberries and cranberries
- Resveratrol could improve fertility and quantity and quality of ocyte in experimental studies
- There is a recommendation not to use doses ≥ 1.0 g/day due to possible side effects: headache, dizziness, nausea, diarrhea, and liver dysfunction

CoQ10

- CoQ10 is a natural substance present in all human cells :
 - Acting as an electron shuttle in the mitochondrial respiratory chain
 - Lipid-soluble antioxidant in cellular metabolism
- CoQ is mainly produced inside the mitochondria and then distributed to cell membranes.
- A reduction in CoQ10 biosynthesis has been linked to aging and aging-related diseases
- CoQ10 synthesis decreases in the oocyte with age, coinciding with the decline in oocyte quality and general fertility.

- The use of CoQ10 has been described as an effective and safe strategy to postpone oocyte aging.
- Dietary sources: oily fish, organ meats, meats, nuts, dairy, whole grains, fruits
- Physical activity increases the CoQ10 levels during aging.
- Further work is needed to determine the optimal timing and dosage of CoQ10 supplementation.

Vitamin D and reproductive aging

- Vitamin D receptor is found in reproductive organs
- The existence of vitamin D-responsive elements on the AMH gene promoter
- A meta-analysis on 20 studies: no significant correlation between serum vitamin D and AMH
- Meta-analysis on 5 interventional studies: showed no significant effect of vitamin D supplementation and AMH
- It is possible that 25(OH)D may only be associated with changes in AMH concentrations among vitamin D-deficient women.
- In one nested case-control study, total 25(OH)D and free 25(OH)D unrelated to early menopause

Other dietary factors and reproductive aging

- Limited studies investigated the associations of <u>soy products</u>, <u>different food groups</u>, <u>macronutrients</u>, and <u>micronutrients</u> with ovarian reserve and time of menopause.
- Results of the studies provided a promising evidence on the influential role of nutrition in ovarian aging and menopause
- A limited number of studies, heterogeneous in their design and study of nutritional factors, makes it difficult to draw definite conclusions.

Conclusion

- ✓ The progressive decline in the ovarian reserve with age is natural; however, it can be accelerated by several factors, like diet and lifestyle.
- ✓ The findings of some studies suggest modest associations of some single nutrients or food items with ovarian reserve and age at menopause.
- To better understand this issue, more studies examining the associations of dietary intakes and dietary patterns with concentrations of AMH and age at menopause are needed.

Nutrition and health in postmenopausal women

Nazanin Moslehi

Assistant Professor Nutrition and Endocrine Research Center Research Institute for Endocrine Sciences Shahid Beheshti University of Medical Sciences

moslehinazanin@yahoo.com

August 29, 2024

Content

- ✓ Introduction
- ✓ Symptoms of menopause
- Metabolic changes of menopause
- Dietary intake and menopausal symptoms
- Benefits of Mediterranean Diet
- ✓ Isoflavones
- ✓ Nutritional interventions and menopause-related sleep disturbances
- ✓ Bone health
- ✓ Conclusions

Introduction

- Menopause can be a challenging time for many women due to physical and psychological symptoms that may impact daily activities and quality of life.
- Menopausal symptoms can impact economic participation due to lower productivity, reduced job satisfaction and problems with time management.
- ✤ 75-80% suffer from the menopausal symptoms.
- ✤ Symptoms are more severe in 20–30% of women.

Introduction

- Supporting women to manage their symptoms is important from a public health and economic perspective.
- Every woman's experience of the menopausal transition is unique, and management strategies should be individualized.

Symptoms of menopause

- Hot flashes
- Night sweats
- Poor sleep
- Genitourinary symptoms/sexual dysfunction
- Psychological symptoms: Mood changes, depression, anxiety

Metabolic changes of menopause

- Weight gain and increased risk of obesity (60-70%)
- Changes in body composition and increased risk of sarcopenia
- Reduced bone mineral density and increased risk of osteoporosis
- Impairment of insulin secretion and insulin sensitivity
- Dysregulation of lipid metabolism
- Increased release of pro-inflammatory cytokines
- Increased risk of cardiovascular diseases, type 2 diabetes, metabolic syndrome, and hormone-sensitive breast cancer

Dietary intake and menopausal symptoms

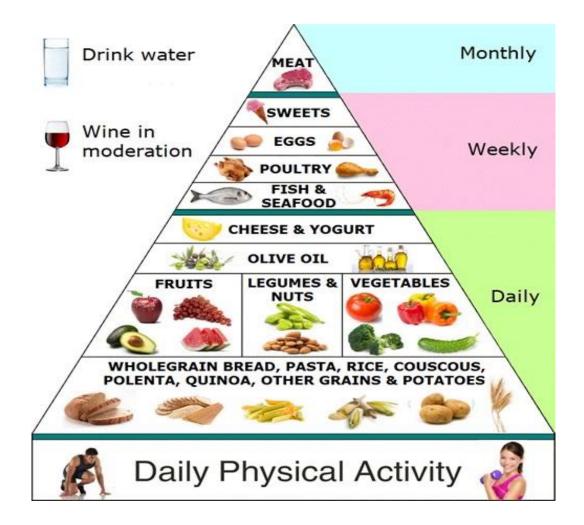
- Dietary intake was associated with intensity of menopausal symptoms.
- Obesity and a high proportion of body fat have been associated with the symptoms.
- Obese women have exacerbated menopausal symptoms.
- High intake of processed foods, saturated fat, refined grains, fried foods, fatty meats, sweets, and sugar-sweetened have bee associated with more severe psychological symptoms, sleep disorders, vasomotor symptoms.
- Higher consumption of vegetables, fruits, and whole grains have been associated with a lower intensity of psychological, vasomotor, urogenital symptoms, and sleep disorders.

Achieving/maintaining a healthy weight

- ✓ Managing bodyweight and composition before, during and after the menopausal transition is important.
- \checkmark Losing just 5 kg of weight improves the tolerability of hot flashes by 30%.
- ✓ Ideal rate of weight loss is 0.5-1 kg of body weight loss per week.
- ✓ This means 500–1000 kcal lower energy intake than requirement.
- ✓ Diets with an energy content of less than 1200 kcal/day are associated with a higher risk of micronutrient deficiency.
- ✓ Regular physical activity is essential

Macronutrient composition

- ✓ A Balanced Nutrition should be Recommended.
- ✓ The best diet for weight loss is still debatable.
- ✓ Protein intake should be 1-1.2 g/kg body weight (20% of energy).
- ✓ Low-fat diets (≤30% of energy) tend to reduce low-density lipoprotein (LDL) cholesterol levels.
- Low-carbohydrate diets (<45% of energy) may be more effective to low triglycerides and increase high-density lipoprotein cholesterol.
- ✓ Low-carbohydrate-high-fat diet should not be recommended in order to reduce fat mass.


Carbohydrate quality

- ✓ Eating carbohydrate with low glycemic index and high fiber
- Regarding carbohydrate sources, preference should be given to vegetables, whole-grain foods, fruits, and dairy products without added sugar.
- ✓ Dietary fiber: 30–45 g/day (whole grain, fiber-rich cereals)
- ✓ Vegetables: 300–400 g/day, 3–4 portions/day
- \checkmark Fruits: 100–200 g, 1–2 portions/day
- ✓ Added sugar no more than 10% of energy (less than 5% of energy has additional benefit)

Fat quality

- \checkmark The fatty acid composition (quality) of the diet is more important than its total amount
- ✓ SFA intake <10%
- ✓ Increased dietary intakes of omega-3 fatty acids
- ✓ Liquid vegetable oils are recommended instead of tropical oils (coconut, palm, and palm kernel), animal fats (butter and lard), and partially hydrogenated fats
- ✓ Increased intake of MUFA from olive and olive oil

Adherence a healthy dietary pattern

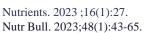
Benefits of Mediterranean Diet

Dietary antioxidants: Beta-carotene, vitamins C and E, selenium, polyphenols

Oxidative stress and inflammation
Inhibition of osteoblastic cell differentiation
Protection of myocytes from reactive oxygen species
TNF-α, IL-6 and IL-1β in visceral adipose tissue

Mediterranean Diet

Increased consumption of whole-grain cereals, nuts, fruits, pulses, olive oil, moderate consumption of fish, and a lower consumption of sweetened beverages and red meat Beta-carotene


Magnesium

Bone formation
Osteocalcin synthesis by osteoblast
Obsteoblast mineralization
Suppression of osteoclast formation

Muscle performance
Energy metabolism
Transmembrane transport
Muscle contraction and relaxation

Isoflavones

- Isoflavones (phytoestrogen) found in foods including soybeans, soy foods, beans, chickpeas and lentils.
- There is some evidence that isoflavones may relieve menopausal symptoms.
- Menopausal hot flashes are rarer in countries where regular soy consumption is a part of the diet.
- One study recommended 20 mg/day of soy isoflavones supplementation during perimenopause for symptom reduction.
- It is not clear whether the effects of dietary and supplemental soy isoflavones are comparable

Isoflavones

- A meta-analysis showed that dietary isoflavone intake has a protective effect on breast cancer risk, with a significant dose-response correlation.
- The effectiveness of anti-estrogen therapy (e.g., Tamoxifen) can be reduced by regular soy consumption.
- However, according to an Asian population-level study, consuming 10–15 g of soy protein (equivalent to 250 mL of soy drink) with a balanced diet and a healthy lifestyle can be safe even in these cases.
- It can be said that there is no consensus among the scientific community on the effect of dietary soy on breast cancer and its treatment.
- The above safe intake applies only to soy foods included in the diet and not soy isoflavones taken as dietary supplements

Isoflavones and lipid lowering effects

- A meta-analysis on 18 studies in postmenopausal females showed :
 - Isoflavone consumption resulted in a significant reduction in triacylglycerol concentrations (-12.50 mg/dL; 95% CI: -23.09, -1.91)
 - A modest increase in HDL cholesterol concentrations (1.83 mg/dL; 95% CI: 0.03, 3.64).
- Subgroup analyses showed :
- These effects were significant in postmenopausal females < 65 y
- Both low (<80 mg/d) and high (>80 mg/d) doses of isoflavones exhibited TG-lowering effects, whereas only the high dose increased HDL cholesterol.
- Longer treatment duration (≥ 24 wk) was associated with a significant reduction in TG, whereas HDL cholesterol improvement occurred during the early period (<24 wk) of supplementation.

Nutritional interventions and menopause-related sleep disturbances

Intervention	No. studies	No. studies benefiting sleep
Isoflavones	8	4
Soy	5	2
Black cohosh	3	3
Melatonin	2	1
Resveratol/trans-resveratrol	1	0
Gincosan (Ginkgo biloba and Panax ginseng)	1	0
Omega-3	1	0
Probiotic yogurt	1	0

Isofalvones and sleep disturbances

- The most consistent finding is that isoflavone-based interventions do appear to benefit subjective sleep despite the heterogeneity in the interventions, and the relatively low number of studies,
- One study has indicated that there might be a dose-response effect upon sleep : higher dose (25 mg daily) was more effective than a lower dose (12.5 mg)

Black cohosh

- Black cohosh is a woodland herb native to North America.
- The root is used as medicine and *is often used for estrogen-related conditions*.
- Black cohosh also appears to improve subjective and objective sleep
- Exact mechanism of action for this intervention upon sleep is not well established.
- Black cohosh can affect the neurotransmitters that modulate sleep/wake regulation, including serotonin (5-HT) and c-aminobutyric acid (GABA).
- Cautions that interactions with medications have been reported

Bone health

- Calcium, vitamin D, vitamin K, selenium, magnesium, and beta-carotene adequate intake could be linked with better BMD in postmenopausal women (adherence to Mediterranean diet)
- 1000-1500 mg/day of dietary calcium was recommended for postmenopausal women.
- Available evidence from completed RCTs provided no support for the use of vitamin D or calcium supplementations alone to prevent fractures.
- Daily supplementation with both vitamin D (400–800 IU/day) and calcium (1000–1200 mg/day) was a more promising strategy.
- A recently published meta-analysis showed improving BMD in postmenopausal women with isoflavone intervention when the duration was ≥ 12 months and when the intervention contained genistein of at least 50 mg/day.

Conclusion

To reduces symptoms and preserves health in menopausal women:

- ✓ Maintain the healthy body weight
- ✓ Adherence to a healthy dietary pattern (e.g., Mediterranean diet)
- ✓ Adequate intake of protein from plant sources (e.g., legumes and nuts) and low-fat protein sources (e.g., poultry, low-fat dairy products)
- ✓ Moderate consumption of red and processed meats
- Increased intake of high quality carbohydrates (fruits, vegetables, and low-GI carbohydrate sources)
- ✓ Increased intake of high quality fats (MUFA, n-3 LCPUFA and omega-3 fatty acids)
- ✓ Using as little amount of sugar and salt as possible to flavor food and drinks
- ✓ Regular physical activity