Non Functional Pituitary Adenoma (NFPA)

Mahtab Niroomand M.D.

Associate Professor of Endocrinology

SBMU

1403/05/17

Agenda

- Epidemiology
- Clinical presentation
- Subtype of NFPA
- Evaluation
- **Treatment**
- Quality of life and long term prognosis
- Prognostic factor

Epidemiology

- ▶ Pituitary adenoma: the most common (10-20%) of intracranial tumors
- Non functional pituitary adenoma (NFPA):
 - More than one-third of all pituitary adenomas.
 - The second most common type of pituitary adenomas,
 - The most frequent type of macroadenomas
 - Originated from adenohypophyseal cell
 - Without clinical presentation of hormonal hypersecretion
 - Malignant transformation: extremely rare
 - Variable prevalence based on:
 - Autopsy
 - MRI series
 - Genetic and environmental factors
 - Local access to diagnostic evaluation

Epidemiology

- ► According to recent epidemiological data:
 - Estimated *prevalence* of NFPAs is 7–41.3 cases/100,000
 - Annual incidence is 0.65–2.34 cases/100,000
 - Standardized *incidence rate* of 1.02–2.34 cases per 100,000
 - Peak incidence between the *fourth and eighth decade* of life

Type of NFPA

Clinically silent NFPA:

- Secret hormonal products, cause elevation of serum concentration
- Don't result clinical signs and symptoms of hormonal hypersecretion

Totally silent NFPA:

- Basal and stimulated hormones within normal range
- No clinical signs and symptoms attributed to hormone excess

► Null cell adenoma:

- Exceptionally rare primary adenohypophyseal tumors
- Immuno-negative for all adeno-hypophyseal hormones and
- Negative for all cell type specific transcription factors (TF)

Clinical presentation

- Absence of clinical manifestations of hormonal hypersecretion result in significant diagnostic delay
 - **►**Neurologic manifestations
 - **■** Visual impairment
 - **■**Headache
 - Pituitary apoplexy
 - **Endocrine** manifestations
 - Hormonal deficiency
 - Hormonal excess

Visual impairment

- The most common neurological symptom (28-100% at diagnosis)
- **■** *Mechanism*:
 - Supra sellar extension of the adenoma and compress of the optic chiasma
- Different visual defect according of:
 - **Degree** and *site* of optic neve compression
- Usually affected both eyes
- Typical visual field defect: Bitemporal hemianopia(40%)
- Diplopia and ophtalmoplegia :
 - Para sellar expansion of the tumor (3rd ,4th ,5th ,6th cranial nerve)

Headache

- Second most common neurological symptoms.
- Mainly localized in the frontal and occipital regions
- Occurs in 19-75% of pituitary tumors regardless of size
- **■** *Mechanisms of headache:*
 - Increased intrasellar pressure
 - Stretching of Dural membrane pain receptors
 - Activation of trigeminal pain pathways
- CSF rhinorrhea (± headache) due to erosion of the sellar floor

Pituitary apoplexy

- Sudden infarction and hemorrhage in pituitary adenoma
- Rare
- Acute and potentially life-threatening condition
- Presentations:
 - Sudden severe headache, visual loss, nausea, vomiting, impaired consciousness, symptoms of meningeal irritation, and acute endocrine dysfunction
- The optimal management is challenging
- The *role and timing* of neurosurgical decompression is still controversial

Endocrine manifestations

► Hormone deficiency:

- More than a third of cases have one or more anterior pituitary hormone deficiencies at the time of diagnosis.
- The prevalence of hypopituitarism at diagnosis 37-85%
- The mechanical compression of :
 - Normal pituitary cells lead to hormone deficiencies (most commonly affected axes :GH and Gonadotropin)
 - Pituitary stalk lead to hyperprolactinemia (usually <95ng/ml)</p>
 - Portal vessels
 - Diabetes insipidus (rare)

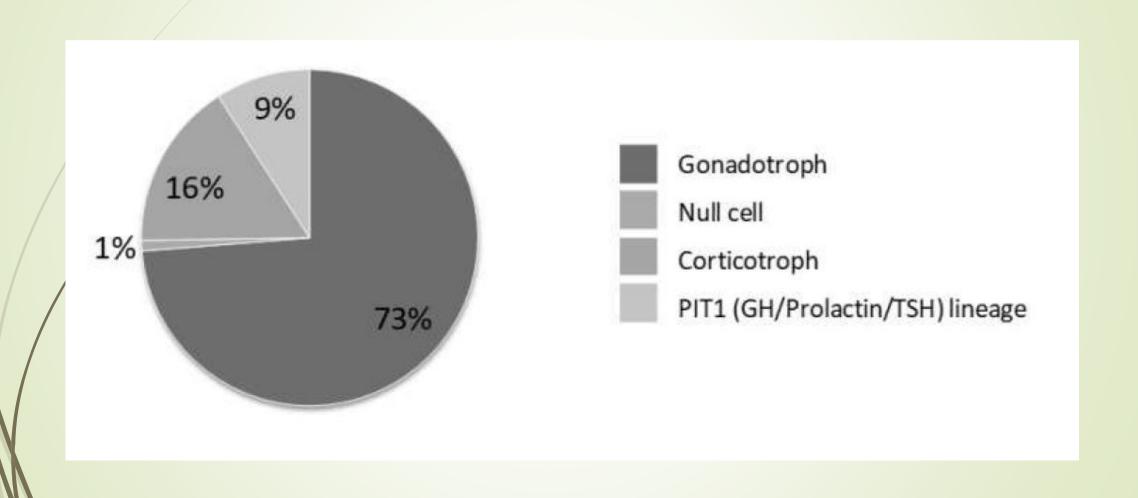
Hormone excess:

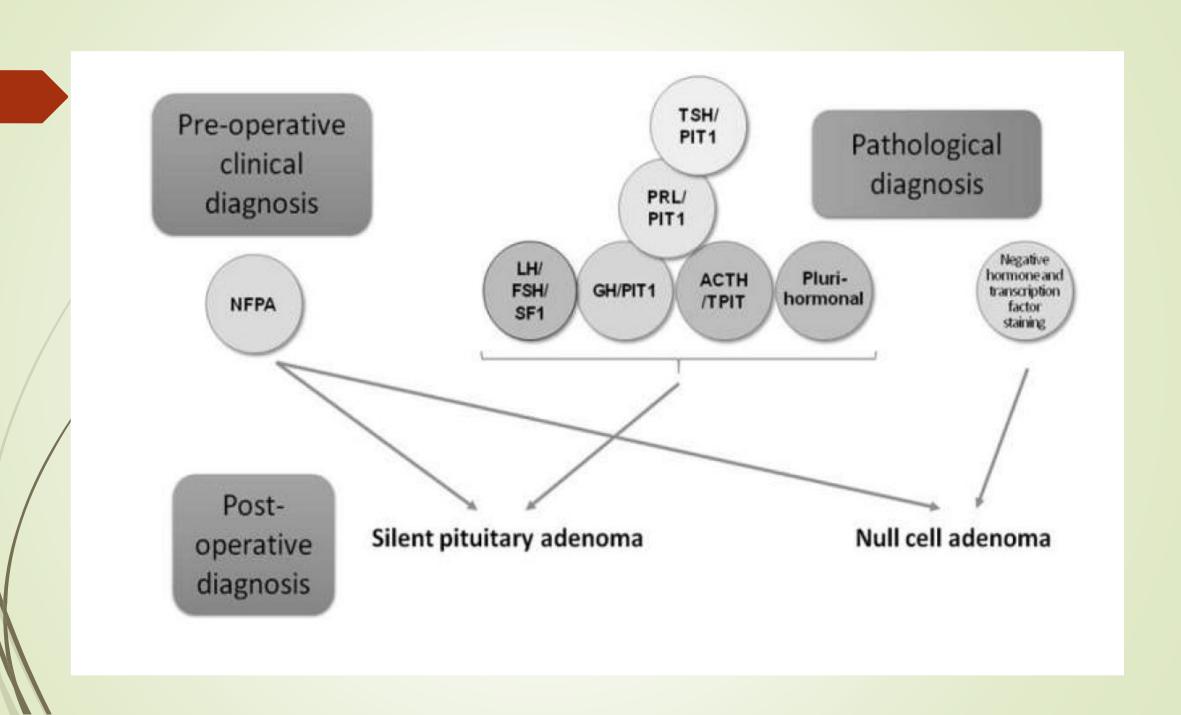
- \blacksquare Rarely increased FSH or LH or α -subunit:
 - Ovarian hyperstimulation in young women
 - Precocious puberty or testicular enlargement in young men

Subtype of NFPA

- ► Null cell adenoma and silent Gonadotroph adenomas (SGAs):
 - SGAs: 80% of NFPA
 - ► Null cell adenoma: rare, more aggressive and invasive than SGA
- Silent Corticotroph adenomas (15% 0f NFPA):
 - **■** Totally silent:
 - Absence of clinical features of Cushing syndrome
 - Normal circadian cortisol secretion
 - Clinically silent:
 - Absence of clinical features of Cushing syndrome
 - Elevated ACTH
 - ► Female preponderance, more frequently giant adenoma, more cavernous sinus invasion

Subtype of NFPA (cont'd)


- Silent Somatotroph adenoma: (2-4%):
 - Without clinical presentation of acromrgaly
 - Preoperative normal GH and IGF-1
 - ► PIT-1 and GH-immunoreactive
- Silent Thyrotroph adenoma:
 - More frequent than functioning thyrotroph adenoma
 - 95% macroadenoma
 - 85% extra sellar extension
- Silent Lactotroph adenoma:
 - Rare
 - PRL positive in IHC
- Silent Plurihormonal adenoma


Histopathological classification of NFPA

TUMOUR TYPE	TRANSCRIPTION FACTOR	HORMONE	BEHAVIOUR
Gonadotroph	SF1	β-LH, $β$ -FSH, $α$ -SU	_
Corticotroph	T-Pit	ACTH	High-risk
Somatotroph	Pit-1	GH	High-risk
Lactotroph	Pit-1	PRL	_
Pleurihormonal	Pit-1	GH, PRL, TSH, α-SU	High-risk
Double/Triple NFPA	Variable	Variable	_
Null-cell	None	None	_

Clinical Medicine Insights: Endocrinology and Diabetes, Volume 13: 1–13, May 18, 2020

Subtype of NFPA

Evaluation of NFPA

- All incidentally discovered Sellar tumors without symptoms:
- Hormonal, clinical and laboratory evaluation for hyper or hypopituitarism:
 - Assessment of PRL and IGF1 in all patients
 - Cortisol excess screening : in presence of clinical symptom
 - ACTH evaluation : not routinely recommend
 - Diluted Prolactin evaluation: in macroadenoma (>3cm) and normal or slightly elevated prolactin

Evaluation of NFPA

- Check for pituitary hormone deficiency:
 - In Microadenoma (<5mm): not recommended
 - In Microadenoma (6-9mm): suggested investigation of serum PRL and IGF-1
 - In Macroadenoma: suggested assessment for Cortisol, freet4,TSH, FSH,LH, testosterone, estradiol, IGF1, GH
- **■** Sellar MRI
- Visual field perimetry (Gold man method):
 - In patients, tumor abuts the optic chiasma

Management of NFPA

■ Observation

- **■** Surgery
- **■** *Medical treatment*
- **■** Radiotherapy

Observation(follow up)

- Main rationale for watchful monitoring in symptomatic and asymptomatic NFPAs is probability of tumor growth over time.
- The risk of tumor growth was 10% per year, and it occurred more quickly in patients who were already hormone deficient.
- Natural history of the tumor gives insight into which tumor can be observed over time.
- No correlation was seen between *tumor size doubling* and *initial tumor size*
- Of prospective randomized controlled studies, the observational approach, and its recommendations are based on expert opinions.

Surgery

- **■** Goals in managing NFPAs:
 - Decompress the mass effect caused by the enlarging adenoma
 - Preserving the normal pituitary gland
- **■** *Indication of surgery:*
- Surgery is the first choice of treatment in symptomatic NFPAs with:
 - Neurological deficit
 - Tumor affecting of optic pathway (visual loss)
 - Hormonal deficiency
 - Apoplexy with visual deficit and deteriorating level of consciousness.
 - Tumor ≥ 2cm
- **Type of surgery:**
 - TSS (endoscopic, macroscopic)
 - **■** Transcranial surgery

Surgery (cont'd)

- Prediction of surgical outcome according to:
 - Cavernous sinus invasion (modified Knosp classification)
 - **►** Shape grading system:
 - Spherical (I)
 - Oval (II)
 - Dumbbell (III)
 - Mushroom (IV)
 - Polylobulated (V)
- Surgical outcome:
 - Total resection/resistance/recurrence
 - Improvement of visual field defect
 - Improvement of hormone deficiencies
 - DI (tumor size, age, absence or interstellar location of bright spot)

Grading	Definition	Pattern	MRI
spherical	- round appearance - max. diameters do not differ >25%		
IIa oval, non-invasive	- oval appearance - one max. diameter differs >25% from the others - no invasion into the cavernous sinus (=Knosp grades 0-2)		
IIb oval, invasive	oval shape as IIa, but with invasion into the cavernous sinus (= Knosp grades 3-4)		
III dumbbell	 dumbbell-like shape Intra-/suprasellar growth mandatory (diameters don't differ >10%) diameter at the level of the planum sphenoidale <75% of the max. diameters of the intra-/suprasellar parts (coronar and/or sagittal plane) 		
IV mushroom	 mushroom-like shape intra-/suprasellar growth mandatory max. diameter of suprasellar part is >50% larger than that of the intrasellar part (coronar or sagittal plane) 		
V octopus	 polylobulated, octopus-like shape consists of an intrasellar part from which at least 3 parts spread into the following regions: suprasellar cistern, cavernous sinus, sphenoid sinus and/or clivus 		

Medical treatment

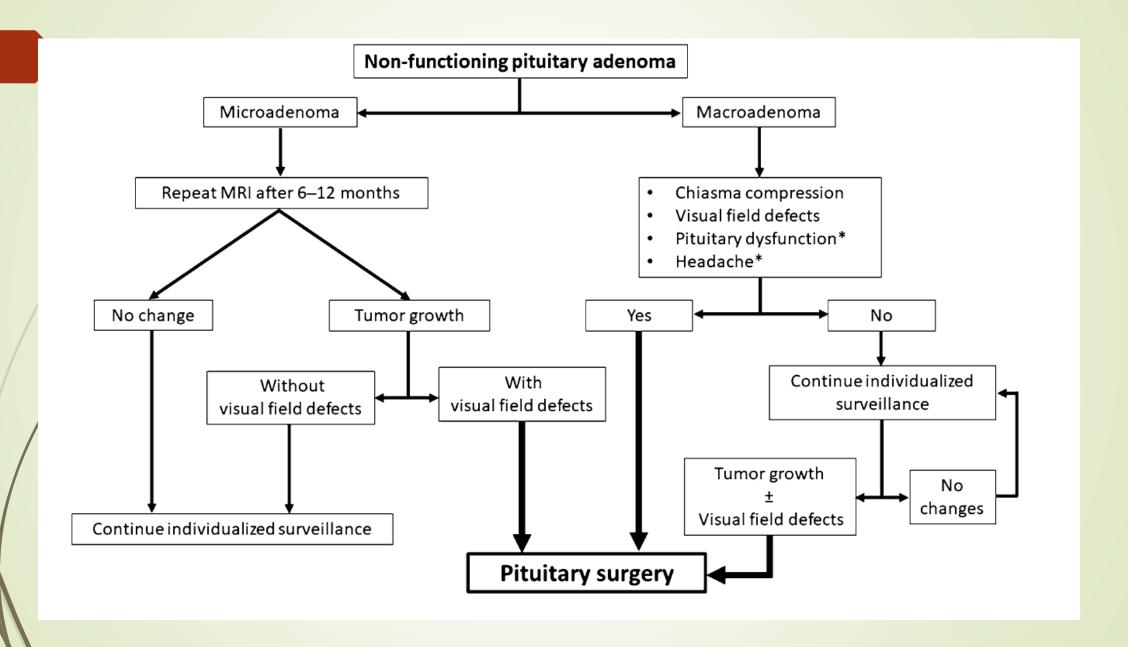
- Dopamine agonist:
 - Residual tumor Shrinkage
 - Decreased risk of recurrence or regrowth
 - Cabergoline dose:
 - Start with 0.5 mg/wk, increased 0.5 mg/wk, max:3mg/wk
- **►** Somatostatin receptor ligands (SRL)
- Dopastatin: chimeric compound of dopamine and SLR
- **■** Temolozomide :
 - Oral alkylating agent
 - In aggressive and recurrent NFPA, pituitary carcinoma
- Peptide receptor radioneuclide therapy

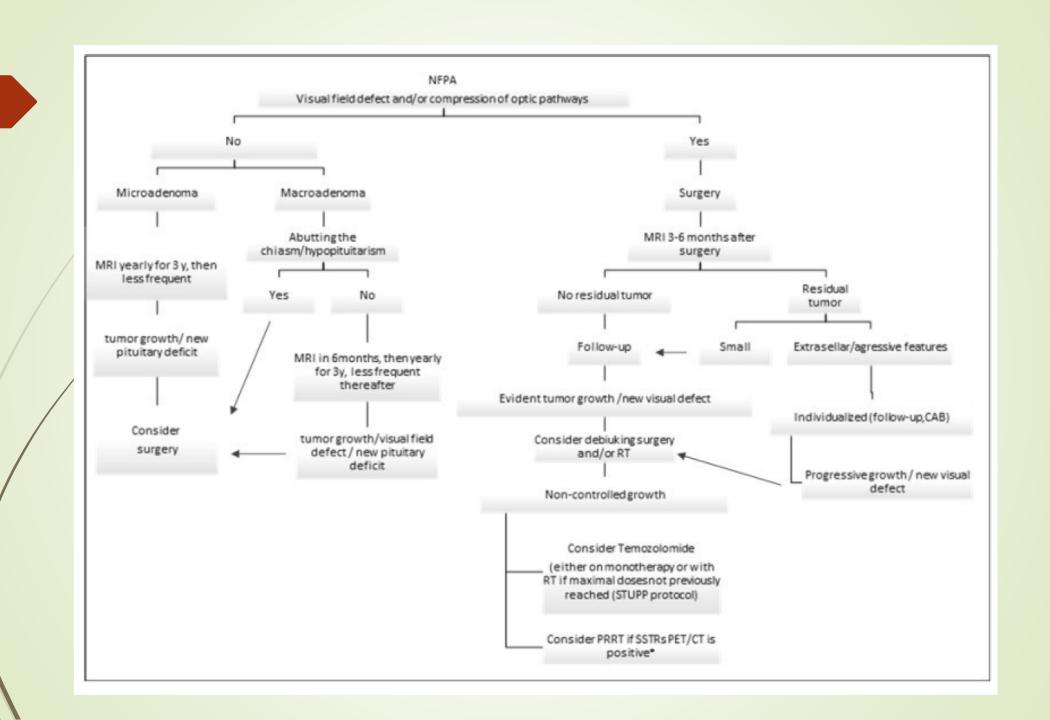
Postoperative Radiotherapy (PORT)

- Some specialized centers systematically recommend PORT :
 - for all patients, even those with apparently complete lesion resection
 - while others apply it on a case-by-case basis, considering the size and location of the tumor remnant, as well as any hormonal deficiency as part of the therapeutic criteria
- Radiotherapy should only be considered if:
 - Cavernous sinus involvement not amenable to surgical excision
 - Significant postoperative residual tumor

Postoperative Radiotherapy (PORT)

- Symptomatic patients with incomplete resection or recurrence of tumor after surgery should be managed with:
 - Second surgery
 - And/or PORT
- **■** Radiotherapy:
 - Conventional
 - Stereotactic radiosurgery


Natural History of Non-Functioning Pituitary Adenomas


- ▶ Predicting growth behavior in NFPTs prior to pathological classification remains primarily based on *tumor size* and *tumor behavior* (aggressiveness and invasiveness)
- The current systematic review in patients with *microadenomas* identifies a low risk of :
 - **■** Growth
 - New endocrinopathies
 - Surgical interventions
- Patients with normal endocrine function *at baseline* and no signs of tumor growth at *a two- or three-year MRI follow-up*, could end any further assessment of pituitary function or size

Long term mortality and morbidity

- ► Mortality more than general population
- Cause of mortality:
 - Circulatory disease
 - Respiratory disease
 - **■** Infectious disease
- Predictive factors :
 - Older age at diagnosis
 - High dose of GC replacement therapy

Close collaboration of a multidisciplinary pituitary team is crucial

Thanks for your attention